Program Guidebook

Bachelor of Science, Computer Science

The Bachelor of Science in Computer Science prepares students for a career in the high demand field of Computer Science. Upon program completion, students will apply their learned knowledge and skills in the designing, developing and optimizing of systems to meet current and future industry needs. The curriculum includes innovative courses in programming and logic, architecture and systems, data structures, project management, artificial intelligence, along with the theory and science of computing.
Understanding the Competency-Based Approach

Practically speaking, how do competency-based programs like those offered at Western Governors University (WGU) work? Unlike traditional universities, WGU does not award degrees based on completion of a certain number of credit hours or a certain set of required courses. Instead, you will earn your degree by demonstrating your skills, knowledge, and understanding of important concepts.

Progress through a degree program is governed not by the amount of time you spend in class but by your ability to demonstrate mastery of competencies as you complete required courses. Of course, you will need to engage in learning experiences as you review competencies or develop knowledge and skills in areas in which you may be weak. To help you acquire the knowledge and skills you need to complete your courses and program, WGU provides a rich array of learning resources. Your program mentor will work closely with you to help you understand the competencies required for your program and to help you create a schedule for completing your courses. You will also work closely with course instructors as you engage in each of your courses. As subject matter experts, course instructors will guide you through the content you must master to pass the course assessments.

The benefit of this competency-based system is that it enables students who are knowledgeable about a particular subject to make accelerated progress toward completing a degree, even if they lack college experience. You may have gained skills and knowledge of a subject while on the job, accumulated wisdom through years of life experience, or already taken a course on a particular subject. WGU will award your degree based on the skills and knowledge that you possess and can demonstrate—not the number of credits hours on your transcript.

Accreditation

Western Governors University is the only university in the history of American higher education to have earned accreditation from four regional accrediting commissions. WGU's accreditation was awarded by (1) the Northwest Commission on Colleges and Universities, (2) the Higher Learning Commission of the North Central Association of Colleges and Schools, (3) the Accrediting Commission for Community and Junior Colleges of the Western Association of Schools and Colleges, and (4) the Accrediting Commission for Senior Colleges and Universities of the Western Association of Schools and Colleges. The university's accreditation status is now managed by the Northwest Commission on Colleges and Universities (NWCCU), which reaffirmed WGU's accreditation in February 2020. The WGU Teachers College is accredited at the initial-licensure level by the Council for the Accreditation of Educator Preparation (CAEP) and by the Association for Advancing Quality in Educator Preparation (AAQEP). The nursing programs are accredited by the Commission on Collegiate Nursing Education (CCNE). The Health Information Management program is accredited by the Commission on Accreditation for Health Informatics and Information Management Education (CAHIIM). The College of Business programs are accredited by the Accreditation Council for Business Schools and Programs (ACBSP).

The Degree Plan

The focus of your program is your personalized Degree Plan. The Degree Plan is a detailed blueprint of the courses you will need to complete in order to earn your degree. The Degree Plan also lays out the accompanying learning resources and assessments that compose your program. The list of courses in the Degree Plan is often referred to as the standard path. The amount of time it takes to complete your program depends on both the amount of new information you need to learn and the amount of time you plan to devote each week to study. Your program mentor and course instructors will help you assess your strengths and development needs to establish a study plan.

Students vary widely in the specific skills and information they need to learn. For example, some students may be highly knowledgeable in a particular subject matter and would not need to engage in new learning opportunities. Other students may find that portions of the program require them to learn new information and that they need to take an online class or participate in a study module to acquire the knowledge and skills needed to fulfill program competencies in that area. Some individuals may be able to devote as little
as 15–20 hours per week to the program, while others may need to devote more time. For this reason, pre-assessments are there to help your program mentor form a profile of your prior knowledge and create a personalized Degree Plan.

**How You Will Interact with Faculty**

At WGU, faculty serve in specialized roles, and they will work with you individually to provide the guidance, instruction, and support you will need to succeed and graduate. As a student, it is important for you to take advantage of this support. It is key to your progress and ultimate success.

Upon your enrollment, you will be assigned a program mentor—an expert in your field of study who will provide you with regular program-level guidance and support from the day you start until the day you graduate. Your program mentor will set up regular telephone appointments (weekly at first) with you, which you will be expected to keep. The mentor will review program competencies with you and work with you to develop a plan and schedule for your coursework. Your program mentor will serve as your main point of contact throughout your program—helping you set weekly study goals, recommending specific learning materials, telling you what to expect in courses, and keeping you motivated. In addition to regular calls, your program mentor is available to help you resolve questions and concerns as they arise.

You will also be assigned to a course instructor for each course. Course instructors are subject matter experts who will assist your learning in each individual course. When you begin a new course, your assigned course instructor will actively monitor your progress and will be in touch to offer one-on-one instruction and to provide you with information about webinars, cohort sessions, and other learning opportunities available to help you acquire the competencies you need to master the course. Your course instructor can discuss your learning for the course, help you find answers to content questions, and give you the tools to navigate the course successfully. In addition, you will communicate with course instructors by posting in the online learning community and participating in live discussion sessions such as webinars and cohorts.

For many of the courses at WGU, you will be required to complete performance assessments. These include reports, papers, presentations, and projects that let you demonstrate your mastery of the required competencies. A separate group of faculty members, called evaluators, will review your work to determine whether it meets requirements. Evaluators are also subject matter experts in their field of evaluation. If your assessment needs further work before it “meets competency,” these evaluators, who review your work anonymously, will provide you with evaluation feedback to help you demonstrate competency and allow you to advance.

**Connecting with Other Mentors and Fellow Students**

As you proceed through your Degree Plan, you will have direct contact with multiple faculty members. These communications can take a variety of forms, including participation in one-on-one discussions, chats in the learning communities, and live cohort and webinar opportunities. As a WGU student, you will have access to your own personal MyWGU Student Portal, which will provide a gateway to your courses of study, learning resources, and learning communities where you will interact with faculty and other students.

The learning resources in each course are specifically designed to support you as you develop competencies in preparation for your assessments. These learning resources may include reading materials, videos, tutorials, cohort opportunities, community discussions, and live discussions that are guided by course instructors who are experts in their field. You will access your program community during your orientation course to network with peers who are enrolled in your program and to receive continued support through professional enrichment and program-specific chats, blogs, and discussions. WGU also provides Student Services associates to help you and your program mentor solve any special problems that may arise.

**Orientation**
The WGU orientation course focuses on acquainting you with WGU's competency-based model, distance education, technology, and other resources and tools available for students. You will also utilize WGU program and course communities, participate in activities, and get to know other students at WGU. The orientation course must be completed before you can start your first term at WGU.

Transferability of Prior College Coursework

Because WGU is a competency-based institution, it does not award degrees based on credits but rather on demonstration of competency. However, if you have completed college coursework at another accredited institution, or if you have completed industry certifications, you may have your transcripts and certifications evaluated to determine if you are eligible to receive some transfer credit. The guidelines for determining what credits will be granted varies based on the degree program. Students entering graduate programs must have their undergraduate degree verified before being admitted to WGU. To review more information in regards to transfer guidelines based on the different degree programs, you may visit the Student Handbook found at the link below and search for “Transfer Credit Evaluation.”

Click here for the Student Handbook

WGU does not waive any requirements based on a student's professional experience and does not perform a "résumé review" or "portfolio review" that will automatically waive any degree requirements. Degree requirements and transferability rules are subject to change in order to keep the degree content relevant and current.

Remember, WGU's competency-based approach lets you take advantage of your knowledge and skills, regardless of how you obtained them. Even when you do not directly receive credit, the knowledge you possess may help you accelerate the time it takes to complete your degree program.

Continuous Enrollment, On Time Progress, and Satisfactory Academic Progress

WGU is a "continuous enrollment" institution, which means you will be automatically enrolled in each of your new terms while you are at WGU. Each term is six months long. Longer terms and continuous enrollment allow you to focus on your studies without the hassle of unnatural breaks between terms that you would experience at a more traditional university. At the end of every six-month term, you and your program mentor will review the progress you have made and revise your Degree Plan for your next six-month term.

WGU requires that students make measurable progress toward the completion of their degree programs every term. We call this “On-Time Progress,” denoting that you are on track and making progress toward on-time graduation. As full-time students, graduate students must enroll in at least 8 competency units each term, and undergraduate students must enroll in at least 12 competency units each term. Completing at least these minimum enrollments is essential to On-Time Progress and serves as a baseline from which you may accelerate your program. We measure your progress based on the courses you are able to pass, not on your accumulation of credit hours or course grades. Every time you pass a course, you are demonstrating that you have mastered skills and knowledge in your degree program. For comparison to traditional grading systems, passing a course means you have demonstrated competency equivalent to a “B” grade or better.

WGU assigns competency units to each course in order to track your progress through the program. A competency unit is equivalent to one semester credit of learning. Some courses may be assigned 3 competency units while others may be as large as 12 competency units.

Satisfactory Academic Progress (SAP) is particularly important to students on financial aid because you must achieve SAP in order to maintain eligibility for financial aid. We will measure your SAP quantitatively by reviewing the number of competency units you have completed each term. In order to remain in good
academic standing, you must complete at least 66.67% of the units you attempt over the length of your program—including any courses you add to your term to accelerate your progress. Additionally, during your first term at WGU you must pass at least 3 competency units in order to remain eligible for financial aid. We know that SAP is complex, so please contact a financial aid counselor should you have additional questions. *Please note: The Endorsement Preparation Program in Educational Leadership is not eligible for federal financial aid.

Courses

Your Degree Plan includes courses needed to complete your program. To obtain your degree, you will be required to demonstrate your skills and knowledge by completing the assessment(s) for each course. In general there are two types of assessments: performance assessments and objective assessments. Performance assessments contain, in most cases, multiple scored tasks such as projects, essays, and research papers. Objective assessments include multiple-choice items, multiple-selection items, matching, short answer, drag-and-drop, and point-and-click item types, as well as case study and video-based items. Certifications verified through third parties may also be included in your program. More detailed information about each assessment is provided in each course of study.

Learning Resources

WGU works with many different educational partners, including enterprises, publishers, training companies, and higher educational institutions, to provide high-quality and effective learning resources that match the competencies you are developing. These vary in type, and may be combined to create the best learning experience for your course. A learning resource can be an e-textbook, online module, study guide, simulation, virtual lab, tutorial, or a combination of these. The cost of most learning resources are included in your tuition and Learning Resource Fee. They can be accessed or enrolled for through your courses. Some degree-specific resources are not covered by your tuition, and you will need to cover those costs separately. WGU also provides a robust library to help you obtain additional learning resources, as needed.

Mobile Compatibility:

The following article provides additional details about the current state of mobile compatibility for learning resources at WGU.

[Student Handbook article: Can I use my mobile device for learning resources?](#)

Standard Path

As previously mentioned, competency units (CUs) have been assigned to each course in order to measure your academic progress. If you are an undergraduate student, you will be expected to enroll in a minimum of 12 competency units each term. Graduate students are expected to enroll in a minimum of 8 competency units each term. A standard plan for a student for this program who entered WGU without any transfer units would look similar to the one on the following page. Your personal progress can be faster, but your pace will be determined by the extent of your transfer units, your time commitment, and your determination to proceed at a faster rate.
### Standard Path for Bachelor of Science, Computer Science

<table>
<thead>
<tr>
<th>Course Description</th>
<th>CUs</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to IT</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Applied Probability and Statistics</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Network and Security - Foundations</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Scripting and Programming - Foundations</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Data Management - Foundations</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Web Development Foundations</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Calculus I</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Scripting and Programming - Applications</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Introduction to Physical and Human Geography</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Health, Fitness, and Wellness</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Discrete Mathematics I</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Version Control</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Discrete Mathematics II</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Communication: Connecting with Others</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Computer Architecture</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Composition: Successful Self-Expression</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Data Management - Applications</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>American Politics and the US Constitution</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Global Arts and Humanities</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Java Fundamentals</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Java Frameworks</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Data Structures and Algorithms I</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Back-End Programming</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Linux Foundations</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Advanced Java</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Ethics in Technology</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Fundamentals of Information Security</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Operating Systems for Programmers</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Data Structures and Algorithms II</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Natural Science Lab</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Business of IT – Applications</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Advanced Data Management</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>IT Leadership Foundations</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Technical Communication</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Course Description</td>
<td>CUs</td>
<td>Term</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Introduction to Artificial Intelligence</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Software Design and Quality Assurance</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Computer Science Capstone</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

**Changes to Curriculum**

WGU publishes an Institutional Catalog, which describes the academic requirements of each degree program. Although students are required to complete the program version current at the time of their enrollment, WGU may modify requirements and course offerings within that version of the program to maintain the currency and relevance of WGU’s competencies and programs. When program requirements are updated, students readmitting after withdrawal from the university will be expected to re-enter into the most current catalog version of the program.
Areas of Study for Bachelor of Science, Computer Science

The following section includes the areas of study in the program, with their associated courses. Your specific learning resources and level of instructional support will vary based on the individual competencies you bring to the program and your confidence in developing the knowledge, skills, and abilities required in each area of the degree. The Degree Plan and learning resources are dynamic, so you need to review your Degree Plan and seek the advice of your mentor regarding the resources before you purchase them.

IT Fundamentals

Introduction to IT
Introduction to IT examines information technology as a discipline and the various roles and functions of the IT department as business support. Students are presented with various IT disciplines including systems and services, network and security, scripting and programming, data management, and business of IT, with a survey of technologies in every area and how they relate to each other and to the business.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner explains different computer hardware and networking technologies and their developments.
- The learner describes fundamental data management functions in databases.
- The learner identifies components of software and its relation to operating systems.
- The learner identifies computer hardware components.
- The learner describes the structure, function, and security associated with networks.
- The learner describes the basics of programming languages in software development.
- The learner describes the role of the IT department in IT infrastructure management, disaster recovery, and business continuity processes.
- The learner evaluates ethical concerns in information technology.

General Education

Applied Probability and Statistics
Applied Probability and Statistics is designed to help students develop competence in the fundamental concepts of basic statistics including: introductory algebra and graphing; descriptive statistics; regression and correlation; and probability. Statistical data and probability are often used in everyday life, science, business, information technology, and educational settings to make informed decisions about the validity of studies and the effect of data on decisions. This course discusses what constitutes sound research design and how to appropriately model phenomena using statistical data. Additionally, the content covers simple probability calculations, based on events that occur in the business and IT industries. No prerequisites are required for this course.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The graduate applies the operations, processes, and procedures of fractions, decimals, and percentages to evaluate quantitative expressions.
- The graduate applies the operations, processes, and procedures of basic algebra to evaluate quantitative expressions, and to solve equations and inequalities.
- The graduate evaluates categorical and quantitative data pertaining to a single variable using appropriate graphical displays and numerical measures.
- The graduate evaluates the relationship between two variables through interpretation of visual displays and numerical measures.
- The graduate evaluates the relationship between two quantitative variables through correlation and regression.
● The graduate applies principles and methods of probability-based mathematics to explain and solve problems.

**Calculus I**
This course guides candidates to apply theoretical concepts of calculus to real-world situations, demonstrating a developing mathematical mindset. This course focuses on limits, derivatives, integrals, and differential equations; it also prepares students for Discrete Mathematics. Prerequisites may include an entrance exam that assesses pre-calculus skills, or readiness; alternatively, completion of pre-calculus within the past 3 – 5 years.

*This course covers the following competencies:*

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The graduate determines a limit numerically, algebraically, and graphically.
- The graduate analyzes derivatives and their properties.
- The graduate analyzes integrals and their properties.
- The graduate solves differential equations.

**Introduction to Physical and Human Geography**
This is Introduction to Physical and Human Geography, a three-module course that addresses the question of what geography really is in today’s complex world; how migration affects—and has been affected by—geography; and one of the biggest present problems related to geography: climate change. Because the course is self-paced, you may move through the material as quickly or as slowly as you need to, with the goal of demonstrating proficiency in the five competencies covered in the final assessment. If you have no prior knowledge of this material, you can expect to spend 30–40 hours on the course content.

*This course covers the following competencies:*

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner analyzes the message of a data visualization for a specific purpose.
- The learner interprets complex global systems through the lenses of physical and human geography.
- The learner analyzes the various causes and effects of human migration.
- The learner analyzes the connections among the various factors contributing to climate change.
- The learner applies logical reasoning to the analysis of climate change.

**Health, Fitness, and Wellness**
Health, Fitness, and Wellness focuses on the importance and foundations of good health and physical fitness—particularly for children and adolescents—addressing health, nutrition, fitness, and substance use and abuse.

*This course covers the following competencies:*

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The graduate identifies the influence of disease, fitness, and lifestyle on the body.
- The graduate identifies the principles of nutrition and the components of a healthy diet.
- The graduate identifies factors that influence mental, emotional, and social wellness.
- The graduate identifies the application of the core competencies of social and emotional learning.

**Discrete Mathematics I**
Discrete Mathematics I helps candidates develop competence in the use of abstract, discrete structures fundamental to computer science. In particular, this course will introduce candidates to logic and proofs; Boolean algebra and functions; set theory; finite and infinite sequences and series; and relations, graphs, and trees. The course emphasizes applications in computer science. Calculus I is a prerequisite for this course.

*This course covers the following competencies:*

BSCS 202306 © 2019 Western Governors University 2/23/23
● Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.

● The graduate evaluates the truth of statements using proofs and the principles of deductive logic.

● The graduate analyzes relationships between sets and functions.

● The graduate minimizes circuits using Boolean algebra and Boolean functions.

● The graduate performs matrix operations.

● The graduate analyzes finite and infinite series.

● The graduate analyzes mathematical problems using relations.

● The graduate analyzes graphs, trees, and the associated data point connections.

**Discrete Mathematics II**

Discrete Mathematics II addresses abstract, discrete, computational methods used in computer science. In particular, this class introduces searching and sorting algorithms; big-O estimates; number theory and cryptography; recursion and induction; counting and advanced counting techniques; discrete probability; and modeling computation. This course emphasizes applications in computer science. Discrete Mathematics I is a prerequisite for this course.

This course covers the following competencies:

● Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.

● The graduate analyzes linear algorithms and associated big-O estimates.

● The graduate analyzes the use of number theory in cryptography.

● The graduate analyzes recursive elements of algorithms, using applicable induction principles.

● The graduate solves problems using counting principles.

● The graduate analyzes mathematical problems using discrete probability or Bayesian methods.

● The graduate determines computational models using deterministic and nondeterministic finite-state machines.

**Introduction to Communication: Connecting with Others**

Welcome to Introduction to Communication: Connecting with Others! It may seem like common knowledge that communication skills are important, and that communicating with others is inescapable in our everyday lives. While this may appear simplistic, the study of communication is actually complex, dynamic, and multifaceted. Strong communication skills are invaluable to strengthening a multitude of aspects of life. Specifically, this course will focus on communication in the professional setting, and present material from multiple vantage points, including communicating with others in a variety of contexts, across situations, and with diverse populations. Upon completion, you will have a deeper understanding of both your own and others’ communication behaviors, and a toolbox of effective behaviors to enhance your experience in the workplace.

This course covers the following competencies:

● Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.

● The learner implements appropriate communication styles based on audience and setting.

● The learner uses communication strategies for managing conflict.

● The learner uses communication strategies to influence others.

**Composition: Successful Self-Expression**

Welcome to Composition: Successful Self-Expression! In this course, you will focus on four main topics: professional writing for a cross-cultural audience, narrowing research topics and questions, researching for content to support a topic, and referencing research sources. Each section includes learning opportunities through readings, videos, audio, and other relevant resources. Assessment activities with feedback also provide opportunities to check your learning, practice, and show how well you understand course content. Because the course is self-paced, you may move through the material as quickly or as slowly as you need to gain proficiency in the seven competencies that will be covered in the final assessment. If you have no prior knowledge or experience, you can expect to spend 30-40 hours on the course content. You will demonstrate competency through a performance assessment. There is no prerequisite for this course and there is no specific technical knowledge needed.
This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner composes a written message with language appropriate for cross-cultural communication.
- The learner writes in a professional manner for a given scenario.
- The learner researches valid and reliable sources.
- The learner writes a reference list.
- The learner incorporates research to support a position or idea.
- The learner writes a message using an effective communication approach for a given situation.
- The learner incorporates self-expression in written communication.

American Politics and the US Constitution
American Politics and the U.S. Constitution examines the evolution of representative government in the United States and the changing interpretations of the civil rights and civil liberties protected by the Constitution. This course will give candidates an understanding of the powers of the branches of the federal government, the continual tensions inherent in a federal system, the shifting relationship between state and federal governments, and the interactions between elected officials and the ever-changing electorate. This course will focus on such topics as the role of a free press in a democracy, the impact of changing demographics on American politics, and the debates over and expansion of civil rights. Upon completion of the course, candidates should be able to explain the basic functions of the federal government, describe the forces that shape American policy and politics, and be better prepared to participate in America's civic institutions. This course has no prerequisite.

Global Arts and Humanities
This is a Global Arts and Humanities course that contains three modules with corresponding lessons. This course is an invitation to see the world through the humanities, examine the humanities during the Information Age, and explore the global origins of music—essentially questioning what makes us human, and how people are connected across culture and time. Each module includes learning opportunities through readings, videos, audio, and other relevant resources. Assessment activities with feedback also provide opportunities to practice and check learning. With no prior knowledge or experience, a learner can expect to spend 30-40 hours on the course content.

Ethics in Technology
Ethics in Technology examines the ethical considerations of technology use in the 21st century and introduces students to a decision-making process informed by ethical frameworks. Students will study specific cases related to important topics such as surveillance, social media, hacking, data manipulation, plagiarism and piracy, artificial intelligence, responsible innovation, and the digital divide. This course has no prerequisites.
This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner implements ethical decision-making frameworks in the information age.
- The learner describes ethical issues regarding data privacy, accuracy, access, and security.
- The learner explains professional ethical codes and their role in guiding professional behavior.
- The learner identifies interventions for personal bias and related legal concerns.

Natural Science Lab
This course provides students an introduction to using the scientific method and engaging in scientific research to reach conclusions about the natural world. Students will design and carry out an experiment to investigate a hypothesis by gathering quantitative data. They will also research a specific ecosystem using academic sources and draw conclusions from their findings.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The graduate evaluates academic sources for their credibility and relevance to a chosen research topic on a natural world phenomenon.
- The graduate accurately executes the process of scientific inquiry through experimentation in the natural world.
- The graduate draws conclusions based on academic research and scientific inquiry.

Technical Communication
Technical Communication introduces skills in editing professional communications, evaluating the impact of professional etiquette in digital environments, and in creating artifacts that are persuasive, informational, and research-based. The course also introduces skills in delivering multimedia presentations using professional verbal communication skills.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner edits corporate communications for proper grammar and punctuation.
- The learner evaluates the impact of business etiquette and communication on digital environments.
- The learner creates technical artifacts that are persuasive, informational, and research based.
- The learner delivers presentations with professional verbal communication skills and multimedia.

Network and Security

Network and Security - Foundations
Network and Security - Foundations introduces learners to the basic network systems and concepts related to networking technologies. Learners will gain skills in applying network security concepts for business continuity, data access, and confidentiality, and in identifying solutions for compliance with security guidance.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner identifies basic network systems and concepts related to networking technologies.
- The learner applies network security concepts for business continuity, data access, and confidentiality.
- The learner identifies solutions for compliance with security guidance.

Scripting and Programming
Scripting and Programming - Foundations
Scripting and Programming - Foundations introduces programming basics such as variables, data types, flow control, and design concepts. The course is language-agnostic in nature, ending in a survey of languages, and introduces the distinction between interpreted and compiled languages. Learners will gain skills in identifying scripts for computer program requirements and in using fundamental programming elements as part of common computer programming tasks. Learners will also gain an understanding of the logic and outcome of simple algorithms.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner identifies scripts for computer program requirements.
- The learner uses fundamental programming elements as part of common computer programming tasks.
- The learner explains the logic and outcome of simple algorithms.

Data Management

Data Management - Foundations
Data Management - Foundations offers an introduction in creating conceptual, logical and physical data models. Students gain skills in creating databases and tables in SQL-enabled database management systems, as well as skills in normalizing databases. No prerequisites are required for this course.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner explains attributes of databases, database tables, and structured and associated query language (SQL) commands.
- The learner determines how to run queries for creation and manipulation of data in relational databases.
- The learner defines primary and foreign keys in data normalization.

Data Management - Applications
Data Management - Applications covers conceptual data modeling and introduces MySQL. Students will learn how to create simple to complex SELECT queries, including subqueries and joins, and how to use SQL to update and delete data. Topics covered in this course include exposure to MySQL; creating and modifying databases, tables, views, foreign keys and primary keys (FKs and PKs), and indexes; populating tables; and developing simple Select-From-Where (SFW) queries to complex 3+ table join queries. The following course is a prerequisite: Data Management - Foundations.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner recommends databases and database management systems to meet organizational needs.
- The learner queries database tables and views with SQL code.
- The learner creates DML statements that insert, update, and delete data in data tables.
- The learner implements joins and aggregate functions in SQL queries.

Advanced Data Management
Advanced Data Management enables learners to extract and analyze raw data. Skillful data management allows organizations to discover and explore data in ways that uncover trends, issues, and their root causes. In turn, businesses are better equipped to capitalize on opportunities and more accurately plan for the future. As organizations continue to extract larger and more detailed volumes of data, the need is rapidly growing for IT professionals who possess data management skills. The skills gained in this course include performing advanced relational data modeling as well as designing data marts, lakes, and warehouses. This course will empower learners with the skills to build business logic at the database layer to employ more stability and higher data-processing speeds. Learners will gain the ability to automate common tasks to summarize and integrate data as they prepare it for analysis. Data Management - Foundations is a prerequisite for this course.
This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner writes complex Structured Query Language (SQL) statements for data analysis and manipulation.
- The learner configures data extraction, transformation, and loading tasks for automated data integration.

**Web Development**

**Web Development Foundations**
Web Development Foundations introduces students to web design and development using HTML, XML, and Cascading Style Sheets (CSS), the foundational languages of the web. This course also covers how to troubleshoot problems using developer tools and integrated development environments commonly employed in web development. There are no prerequisites for this course.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner creates the structure of basic web documents using HTML and XML.
- The learner implements web page formatting and interface aesthetics using CSS
- The learner resolves software problems in web development environments with debugging tools.

**Software**

**Scripting and Programming - Applications**
Scripting and Programming - Applications for undergraduates explores the various aspects of the C++ programming language by examining its syntax, the development environment, and tools and techniques to solve some real-world problems.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The graduate applies fundamental programming concepts in a specific programming environment.
- The graduate prepares code which declares, initializes, and assigns values to variables of appropriate types as part of the application development process.
- The graduate writes code that implements decision and loop constructs to control the flow of a program.
- The graduate creates arrays in order to solve complex problems.
- The graduate applies pointers to solve complex problems.
- The graduate writes code that creates and manipulates functions and files.
- The graduate applies object-oriented programming concepts in order to create a basic application.

**Java Fundamentals**
Java Fundamentals introduces you to object-oriented programming in the Java language. You will create and call methods, design Java classes, and other object-oriented principles and constructs to develop software that meets business requirements. This course requires foundational knowledge of programming including variables, type, program flow and debugging.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner creates object-oriented programs.
- The learner creates methods in Java.
Java Frameworks
Java Frameworks builds object-oriented programming expertise and introduces powerful new tools for Java application development. Students will execute exception handling, Java frameworks, and other object-oriented principles and constructs to develop a complete application including a user interface. This course requires foundational knowledge of object-oriented programming and the Java language.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner implements user interfaces.
- The learner implements object-oriented programming frameworks.

Back-End Programming
Back-End Programming introduces students to creating back-end components of a web application with the support of framework packages. This course also teaches students how to implement database functionality in a web application and how to create web services. This course requires intermediate expertise in object-oriented programming and the Java language.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner develops object-oriented applications that can be integrated with relational databases.
- The learner writes code for object-oriented applications using Spring framework.
- The learner implements design patterns for object-oriented applications.

Advanced Java
Advanced Java refines object-oriented programming expertise and skills. You will implement multithreaded, object-oriented code with the features of Java necessary to develop software that meets business requirements. Additionally, you will determine how to deploy software applications using cloud services. This course requires intermediate expertise in object-oriented programming and the Java language.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner writes multithreaded, object-oriented code using Java frameworks.
- The learner determines how to deploy software applications using cloud services.

Software Design and Quality Assurance
Software Design and Quality Assurance applies a QA focus to every phase of the software development life cycle. This course investigates best practices for quality analysis, quality planning, and testing strategies as they pertain to the everyday practice of software development. Students will come to understand how their work fits into the bigger picture: how QA, testing, and code-writing practices interact within specific process models; the potential impact of new code on existing code or on other applications; the importance of usability and the influence users have on the ultimate success of an application. Students will explore test plans, test cases, unit tests, integration tests, regression tests, usability tests, and test and review tools.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner determines the impact of business requirements on software design patterns and software systems.
- The learner identifies goals and potential roadblocks as part of software development plans.
- The learner defines plans for development tasks and environments based on desired quality outcomes.
- The learner recommends tools and services to address functional and non-functional testing outcomes.
Full Stack Engineering

Version Control
Version control is critical to maintaining software and enabling scalability solutions. A best practice for any programming project that requires multiple files uses version control. Version control enables teams to have collaborative workflows and enhances the software development lifecycle. This course introduces students to the basics of publishing, retrieving, branching, and cloning. There are no prerequisites for this course.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner implements version control processes and solutions that maintains source code.

Computer Science

Computer Architecture
Computer Architecture introduces students to concepts and characteristics of organization and architecture applied to modern computer systems including performance, processor, memory, input/output, and multiprocessors to optimize system design, performance, and efficiency.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The graduate evaluates performance of hardware and software interaction to maximize system capabilities.
- The graduate evaluates characteristics of computer architecture to meet business objectives.
- The graduate analyzes computer architecture choices affecting information system solutions in order to effectively communicate and apply design considerations within an organization.
- The graduate analyzes the purpose and function of the operating system and how it interacts with the computer architecture.
- The graduate assesses the impacts of hardware and software design choices (i.e., cost, performance, optimization techniques, power consumption, size, compatibility, etc.) to improve quality and capabilities.

Data Structures and Algorithms I
Data Structures and Algorithms I covers the fundamentals of dynamic data structures, such as bags, lists, stacks, queues, trees, and hash tables, and their associated algorithms. With Java software as the basis, the course discusses object-oriented design and abstract data types as design paradigms. The course emphasizes problem-solving and techniques for designing efficient, maintainable software applications. Students will implement simple applications using the techniques learned. This course has no prerequisites.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner explains the use, logic, and structure of algorithms.
- The learner determines how data structure types impact operations within application, service, or data stores.
- The learner applies algorithms that address a desired outcome based on space and time complexity in big-O notation.

Data Structures and Algorithms II
Data Structures and Algorithms II explores the analysis and implementation of high-performance data structures and supporting algorithms, including graphs, hashing, self-adjusting data structures, set representations, and dynamic programming. The course also introduces students to NP-complete problems. The course discusses how to use Python techniques to implement software solutions for problems of memory management and data compression. This course has two prerequisites: Data Structures and Algorithms I and Discrete Math II.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
The graduate creates software applications that incorporate non-linear data structures for efficient and maintainable software.

- The graduate writes code using hashing techniques within an application to perform searching operations.
- The graduate incorporates dictionaries and sets in order to organize data into key-value pairs.
- The graduate evaluates the space and time complexity of self-adjusting data structures using big-O notation to improve the performance of applications.
- The graduate writes code using self-adjusting heuristics to improve the performance of applications.
- The graduate evaluates computational complexity theories in order to apply models to specific scenarios.

Introduction to Artificial Intelligence

Introduction to Artificial Intelligence explores the foundational principles and practices of artificial intelligence (AI), machine learning, and robotics. The course prepares students to analyze relationships, build agents, and create models relevant to AI problems. The prerequisites for this course are Introduction to Probability and Statistics as well as Data Structures and Algorithms II.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The graduate analyzes the relationships and rules pertaining to intelligence within systems.
- The graduate writes code to enable robots to execute simple tasks.
- The graduate creates models with machine learning algorithms in order to extract actionable insights from data.
- The graduate distinguishes among search strategies to fit specific data-oriented problems.
- The graduate implements basic intelligent agent technology in order to automate services.

Computer Science Capstone

The Computer Science Capstone course allows the student to demonstrate their application of the academic and professional abilities developed during the BSCS program. The capstone challenges students to integrate skills and knowledge from all program domains into one project.

Operating Systems

Linux Foundations

Linux Foundations prepares learners for the LPI Linux Essentials certification, and is an introduction to Linux as an operating system as well as an introduction to open-source concepts and the basics of the Linux command line. Learners will gain skills in identifying the fundamentals of open-source software and to develop resources for data access and security.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner identifies the fundamentals of open-source software.
- The learner develops resources for data access and security.

Operating Systems for Programmers

This course covers operating systems from the perspective of a programmer, including the placement of the operating system in the layered application development model. Primarily, OSs provide memory management, task scheduling, and CPU allocation. Secondarily, OSs provide tools for file storage/access, permission control, event handling, network access, and cross-process interaction. OSs also provide tools for debugging problems within a single process or within groups of programs. There are no prerequisites for this course.

This course covers the following competencies:
● Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.

● The learner describes operating systems, their functions, and their structure.

● The learner describes processes and threads and their relationship to multithreading and parallel programming.

● The learner explains the different approaches to memory management and how they affect CPU utilization.

● The learner describes different file systems and I/O algorithms.

● The learner describes mechanisms used by the operating system for protection and security and how they relate to software applications.

Secure Systems Analysis & Design

Fundamentals of Information Security
This course lays the foundation for understanding terminology, principles, processes, and best practices of information security at local and global levels. It further provides an overview of basic security vulnerabilities and countermeasures for protecting information assets through planning and administrative controls within an organization. This course has no prerequisites.

This course covers the following competencies:

● Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.

● The learner identifies security principles, policies, practices, and methods for asset protection and cyber defense.

● The learner identifies security requirements based on principles of confidentiality, integrity, and availability.

● The learner identifies cybersecurity guidelines in privacy and compliance.

Business of IT

Business of IT – Applications
Business of IT – Applications examines Information Technology Infrastructure Library (ITIL®) terminology, structure, policies, and concepts. Focusing on the management of information technology (IT) infrastructure, development, and operations, learners will explore the core principles of ITIL practices for service management to prepare them for careers as IT professionals, business managers, and business process owners. This course has no prerequisites.

This course covers the following competencies:

● Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.

● The learner applies Information Technology Infrastructure Library (ITIL) concepts, core components, principles, and models of service management.

● The learner applies the Information Technology Infrastructure Library (ITIL) six activities of the service value chain.

IT Leadership Foundations
IT Leadership Foundations is an introductory course that provides students with an overview of organizational structures, communication, and leadership styles specific to information technology in organizations. It also introduces students to some of the power skills that help make successful IT professionals, including time management, problem solving, and emotional intelligence. Students in this course explore their own strengths and passions in relation to the field. There are no prerequisites for this course.

This course covers the following competencies:

● Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.

● The learner selects appropriate influential leadership strategies for workplace situations.

● The learner communicates ideas, opinions, and information suitable for various professional settings.

● The learner reflects on the emotional reactions of self and others in a variety of professional situations.
The learner recommends strategies for decision-making in team environments.

Information Technology Management

Software Engineering
Software Engineering introduces the concepts of software engineering to students who have completed the core courses in programming and project management. The principles build on previously acquired concepts, switching the emphasis from programming simple routines to engineering robust and scalable software solutions. This course does not cover programming, but it provides an overview of software engineering processes and their challenging nature, focusing on the need for a disciplined approach to software engineering. A generic process framework provides the groundwork for formal process models. Prescriptive process models such as the Waterfall Model and Agile Development are included. This course also introduces the elements and phases of software engineering, including requirements engineering, design concepts, and software quality. There are no prerequisites for this course.

This course covers the following competencies:

- Begin your course by discussing your course planning tool report with your instructor and creating your personalized course plan together.
- The learner analyzes the objectives, scope, and organizational impact of software systems.
- The learner identifies the costs and impact of design changes to software systems.
- The learner determines optimal software design for given requirements.
- The learner creates test cases for quality assurance as part of software development processes.
Accessibility and Accommodations

Western Governors University is committed to providing equal access to its academic programs to all qualified students. WGU’s Accessibility Services team supports this mission by providing support, resources, advocacy, collaboration, and academic accommodations for students with disabilities and other qualifying conditions under the Americans with Disabilities Act (ADA). WGU encourages student to complete the Accommodation Request Form as soon as they become aware of the need for an accommodation. Current and prospective students can reach the Accessibility Services team Monday through Friday 8:00 a.m. to 5:00 p.m. MST at 1-877-HELP-WGU (877-435-7948) x5922 or at ADASupport@wgu.edu.

Need More Information? WGU Student Services

WGU’s Student Services team is dedicated exclusively to helping you achieve your academic goals. The Student Services office is available during extended hours to assist with general questions and requests. The Student Services team members help you resolve issues, listen to student issues and concerns, and make recommendations for improving policy and practice based on student feedback.

Student Services team members also assist with unresolved concerns to find equitable resolutions. To contact the Student Services team, please feel free to call 877-435-7948 or e-mail studentservices@wgu.edu. We are available Monday through Friday from 6:00 a.m. to 10:00 p.m., Saturday from 7:00 a.m. to 7:00 p.m., mountain standard time. Closed Sundays.

If you have inquiries or concerns that require technical support, please contact the WGU IT Service Desk. The IT Service Desk is available Monday through Friday, 6:00 a.m. to 10:00 p.m. and Saturday and Sunday, 10:00 a.m. to 7:00 p.m., mountain standard time. To contact the IT Service Desk, please call 1-877-HELP-WGU (877-435-7948) or e-mail servicedesk@wgu.edu. The support teams are generally closed in observance of university holidays.

For the most current information regarding WGU support services, please visit “Student Support” on the Student Portal at http://my.wgu.edu.